EXISTIENCE AND UNIQUENESS OF THE SOLUTION OF THE ELASTIC-PLASTIC TORSION PROBLEM FOR A CYLINDRICAL BAR OF OVAL CROSS-SECTION

(SUSHCHESIVOVANIE I EDINSTVENNOST' RESHENIIA zadachi UPRUGO-PIASTICHESKOGO RRUCHENIIA TSILINDRICRESKOGO STERZENIA OVAL'NOGO SECHENIIA)

PMM Vol.29, № 5, 1965, pp.879-887
B. D.ANNIN
(Novosibirsk)
(Received January 17, 1965)

The problem of determining the stresses arising during the torsion of a cylindrical bar of elastic-ideal plastic material was posed a long time ago [1 and 2]. The major difficulty is that the boundary separating the elastic and plastic regions is unknown and its determination is part of the processes of finding the solution. The exact solution for a circular cross-sction was found in [1], and that for an almost elliptic cross-section was found in [3]. When the cross-section is a polygon [4], this problem is reduced to the determination of two functions of a complex variable that are analytic in the upper half-plane and satisfy certain boundary-value conditions on the real axes. In [3 and 5], an inverse method was proposed in which the shape of the flastic core is used to find the cross-section. In [6], the inverse method was used to reduce the elastic-plastic torsion problem to a nonlinear singular integral equation which was not investigated any further. In [7], necessary conditions for the existence of the solution of the elastic-plastic torsion problem were ascertained. Various approximate methods were suggested in [4 and 8 to 12].

Below we will study the case of an oval cross-section for angles of twist such that the elasticmplastic boundary has no point in common with the longitudinal surface of the bar. By means of a Legendre transformation, the present problem has been reduced to the Dirichlet problem in a circle for the Monge-Ampere equation of the elliptic type. Moreover, the elastic-plastic boundary is determined from the normal derivative of the solution on the boundary of the circle. The existence and uniqueness of the solution of the elastic-plastic torsion problem has been proved. A number of estimates of practical interest have also been obtained.

1. Formuiation of problem. We will consider the elastic-plastic torsion of a cylinarical bar whose cross-section F is bounded by the strictiy concave contour r. We will assume that the radius of curvature $p(s)>0$ exists at each point of the contour I and that as a function of the

[^0]are-length s it is a function of class C^{∞}, i.e. that $d^{2} \rho(s) / d s^{2}$ is continuous. It is clear that $\infty>\rho_{\max } \geqslant \rho(s) \geqslant \rho_{\min }>0$, where $\rho_{\max }$, and $\rho_{\text {min }}$ are the maximum and minimum values of the radius of curvature, respectively. We will use the triangular cartesian axes $x y z$ with the z-axis parallel to the generatrix of the cylindrical surface of the origin 0 in F. Let G be the shear modulus, κ the plastic constant, α the angle of twist per unit length, and \cap the area of F. We will use the notation $a=2^{-1} G^{-1} \alpha^{-1} k$. The twisting has a clockwise sense when viewed in the positive direction of the z-axis. We will assume that there is an elastic core, namely the simply-connected region D with boundary L lying entirely inside Γ (Fig.1). The doubly-connected region bounded by Γ and

Fig. 1 L will be denoted by B. In this region the material is in a completely plastic state. The indices x, y will be used to indicate partial derivatives, as well as for the usual purpose of indicating the components of stress, where this does not lead to confusion.

The elastic-plastic torsion problem, which henceforth will be called problem A, is formulated as follows.

Problem A. Given a simply-connected region F bounded by. the oval I satisfying the above-mentioned smoothness conditions. In the simplyconnected region D, which together with its boundary L lies inside F, it is required to find to within an arbitrary additive constant the function $\psi(x, y)$ that is (1) single-valued and continuous in $F+\Gamma$, (2) has continuous first order partial derivatives ψ_{x}, ψ_{y} in $F+\Gamma$, (3) has continuous second order partial derivatives $\psi_{x x}, \psi_{x y}, \psi_{y y}$ in D, and (4) satisfies the following conditions:

$$
\begin{gather*}
\psi_{x x}+\psi_{y y}=-a^{-1}, \quad \psi_{x}^{2}+\psi_{y}^{2}<1 \quad \text { in region } D \tag{1.1}\\
\psi_{x}^{2}+\psi_{y}^{2}=1 \tag{1.2}\\
(B=F-(D+L)) \quad \text { in region } L+B+\Gamma \tag{1.3}\\
\operatorname{grad} \psi=n_{\Gamma} \quad \text { on boundary } \Gamma
\end{gather*}
$$

where n_{Γ} is the unit outward normal to the boundary curve Γ.
N ote 1.1. The quantity $a=2^{-1} G^{-1} \alpha^{-1} h$ is regarded as parameter $0<a<\infty$.

Note 1.2. It follows from (1.3) that the function $\psi(x, y)$ is constant on Γ. We will assume that

$$
\begin{equation*}
\psi(x, y)_{\Gamma}=0 \tag{1.4}
\end{equation*}
$$

Note 1.3. The shear stresses are

$$
\tau_{x z}=h \psi_{y}, \quad \tau_{y z}=-k \psi_{x}
$$

Note 1.4. The problem of the flow of a dllatant fluid through a tube [13] of elliptic cross-section F has a similar formulation. Another hydrodynamic interpretation of Problem.A was given by von Mises [5].
2. Uniquanest of solution. Let R be an arbitrary point on the contour Γ. Let $x_{1} R y_{1}$ be the moving coordinate system (Fig.I) in the $x y$-planeformed
by the tangent $A x_{2}$ to F at R pointed in the direction of increasing arclength, and the inward normal $R y_{i}$. We will assume that the tangent to Γ at the point of intersection with the x-axis is perpendicular to the x-axis. The angle between $R x_{2}$ and σx will be denoted by β. The equation of the oval Γ can be represented in the form [14]

$$
\begin{gather*}
x^{\circ}(\beta)=\frac{d M(\beta)}{d \beta} \cos \beta+M(\beta) \sin \beta, \quad y^{\circ}(\beta)=\frac{d M(3)}{d \beta} \sin \beta-M(\beta) \cos \beta \\
\left(1 / 2^{\pi} \leqslant \beta<5 / 2 \pi\right) \tag{2.1}
\end{gather*}
$$

where $M(\beta)$ is the basic function on $[$. We have the relation

$$
\begin{equation*}
\rho(\beta)=M(\beta)+\frac{d^{2} M(\beta)}{d \beta^{2}} \tag{2,2}
\end{equation*}
$$

where $\rho(\beta)$ is the radius of curvature of Γ as a function of β.
Note 2.1. According to (2.1), each $\beta \in\left[\frac{1}{2} \pi, 5 / 2 \pi\right)$ is associated with one and only one point $R \in \Gamma$.
$\mathrm{N} \circ \mathrm{t}$ e 2.2. It is clear that $M(\beta) \in C^{4}$, 1.e. $d^{4} M(\beta) / d \beta^{4}$ is a continuous function for $\beta \in[1 / 2 \pi, 5 / 2 \pi)$.

Definition. The curve L situated within Γ has property E if the following conditions are fulfilled:
a) The curve L admits a representation of the form

$$
X(\beta)=x^{\circ}(\beta)-N(\beta) \sin \beta, \quad Y(\beta)=y^{\circ}(\beta)+N(\beta) \cos \beta
$$

where $x^{\circ}(\beta)$ and $y^{\circ}(\beta)$ are taken from (2.1) and $N(\beta)$ has period a_{π} and is a continuous function of β in $[1 / 2 \pi, 5 / 2 \pi)$, with $0<N(\beta)<\rho(\beta)$.
b) For two distinct arbitrary angles $\beta=\beta_{1}$ and $\beta=\beta_{2}$ in [$\frac{1}{2} \pi$, $\frac{5}{2} \pi$] the line segments $R_{1} Q_{1}$ and $R_{2} Q_{2}$ do not have a point of intersection (*). Here, each point $R_{i} \in \Gamma$ corresponds to a β_{i} satisfying (2.1) and each point $Q_{i} \in L$ corresponds to a ε_{i} satisfying (2.3) ($t=1,2$).

Note 2.3. It is clear that L is a simple Jordan curve such that to each value of $\beta \in[1 / 2 \pi, 5 / 2 \pi)$ there is one and only one point $Q \in L$; given by (2.3). Moreover, $N(\beta)$ is the ordinate of this point in the system of coordinates $x_{1} R y_{1}$, i.e it is the length of the segment $Q R$ (Fig.I).

Theorem 2.1. If a solution of Problem A having property E on the contour L exists, and if the function (x, y) is twice continuously differentiable (**) in $L+B+\Gamma$, then this solution is unique.

Let it be assumed that Problem A has a solution with the properties mentioned in Theorem 2.1; then the following assertions are valid.
2.1°. In the $x y$-space the functions $\psi(x, y)$, where the points (x, y) lie in $L+B+\Gamma$, generate a surface whose parametric representation is

$$
\begin{equation*}
x=\frac{d M(\beta)}{d \beta} \cos \beta+[M(\beta)-u] \sin \beta \tag{2.4}
\end{equation*}
$$

$$
(1 / 2 \pi \leqslant \beta<5 / 2 \pi)
$$

[^1]\[

$$
\begin{equation*}
y=\frac{d M(\beta)}{d \beta} \sin \beta-[M(\beta)-u] \cos \beta \quad(0 \leqslant u \leqslant N(\beta)) \tag{2.4}
\end{equation*}
$$

\] cont.

It is to be noted that Formulas (2.4) alsc result if one uses the cauchy method to solve the Cauchy problem for Equation (1.2) using the conditions (1.3) and (1.4), where Γ is taken in the form (2.1). The validity of assertion 2.1 follows [15] from the fact that $\psi(x, y)$ has continuous second order derivatives in $L+B+\Gamma$ and that the projections on the $x y$-plane of the characteristics of the integral surface satisfying Equation (1.2) and condition (1.3) do not intersect (*) in $L+B+\Gamma$, since they coincide with the normals to Γ.

Corollary 2.1. In $L+B+\Gamma$ the following relations hold:

$$
\begin{equation*}
\psi_{x}=-\sin \beta, \quad \psi_{y}=\cos \beta, \quad \psi-x \Psi_{x}-y \psi_{y}=M(\beta) \tag{2.5}
\end{equation*}
$$

N ot e 2.4. From Note 2.1 and relations (2.5) which hold in particular on L, it follows that each of the functions $\phi_{x}(x, y), \psi_{y}(x, y)$ do not assume on L any particular value more than twice.
2.2°. Everywhere in region D

$$
\begin{equation*}
\psi_{x x} \psi_{y y}-\psi_{x y}^{2} \neq 0 \tag{2.6}
\end{equation*}
$$

Proof. Let point $\left(x_{0}, y_{0}\right) \in D$ and

$$
\psi_{x x} \psi_{y y}-\psi_{x y}{ }^{2}=0
$$

Without limiting the generality, one can assume (**) that

$$
\psi_{x y}\left(x_{0}, y_{0}\right)=\psi_{x x}\left(x_{0}, y_{0}\right)=0
$$

Then, ([16], page 428) the harmonic function $\psi_{x}(x, y)$ assumes the value $\psi_{x}\left(x_{0}, y_{0}\right)$ at at least four distinct points on the contour (***).
2.3°. Formulas

$$
\begin{equation*}
\xi=-\psi_{x}(x, y), \quad \eta=-\psi_{y}(x, y), \quad(x, y) \in D+L \tag{2.7}
\end{equation*}
$$

effect a homeomorphic mapping of $D+L$ onto the circle $K+C$ in the $\xi \eta-$ plane. This circle is defined by the inequality $\xi^{2}+\eta^{2} \leqslant 1$.

This assertion is vindicated as follows: (1) since the functions $\psi_{x}(x, y)$ and $\phi(x, y)$ are continuous in $D+L$, Formulas (-2.7) represent a one-toone mapping of L onto the circumference C of unit radius, 1.e. $\xi^{2}+\eta^{2}=1$; (2) the Jacobian of mapping (2.7) is nonzero in region D ($[171$, page 26).
2.4°. Everywhere in region D

$$
\psi_{x x} \psi_{y y}-\psi_{x y}{ }^{2}>0
$$

Proof. Let the contrary be assumed. singular point in the continuous vector field however, is impossible, since the index of L Then the index of the isolated for example, [18]).

Corollary 2.2. Everywhere in D

$$
\psi_{x x}<0, \quad \psi_{y y}<0
$$

[^2]2.5°. Let us introduce the notation
\[

$$
\begin{equation*}
\Phi=-x \psi_{x}-y \psi_{y}+\psi \tag{2.8}
\end{equation*}
$$

\]

and regard Φ as a function of the variables $5, \eta$ defined in (2.7). The function $\Phi(\xi, \eta)$ is then continuous in the closed circle $K+C$, and in K it satisfies (*) Equations

$$
\begin{equation*}
\Phi_{\xi \xi} \Phi_{\eta M}-\Phi_{\xi, ~}^{2}-a\left(\Phi_{\xi \xi}+\Phi_{n M}\right)=0 \tag{2.9}
\end{equation*}
$$

and the inequalities

$$
\begin{equation*}
\Phi_{\xi \xi}>0, \quad \Phi_{m i}>0 \tag{2.10}
\end{equation*}
$$

On the circumference C this function satisfies the condition

$$
\begin{equation*}
\left.\Phi_{\xi}(\xi ; \eta)\right|_{C}=M(\theta+1 / 2 \pi) \tag{2.11}
\end{equation*}
$$

where θ is the polar angle in the $\xi \eta$-plane. In circle K we have. the identities

$$
\begin{equation*}
\Phi_{\xi}(\xi, \eta)=x, \quad \Phi_{\eta}(\xi, \eta)=y \tag{2.12}
\end{equation*}
$$

The proof of 2.5° follows from the properties of the Legendre transformation [19].
2.6°. Let us use the notation

$$
\begin{equation*}
w(\xi, \eta)=\Phi(\xi, \eta)-1 / 2 a\left(\xi^{2}+\eta^{2}\right)+1 / 2 a \tag{2.13}
\end{equation*}
$$

The function $w(\xi, \eta)$ is continuous in $K+C$, and on the circumference of the circle its value is

$$
\begin{equation*}
\left.w(\xi, \eta)\right|_{C}=M(\theta+1 / 2 \pi) \tag{2.14}
\end{equation*}
$$

and inside K it satisfies the Monge-Ampère equation

$$
\begin{equation*}
w_{55} w_{m}-w_{\xi_{n}}^{2}=a^{2} \tag{2.15}
\end{equation*}
$$

and the inequalities

$$
\begin{equation*}
w_{z}>0, \quad w_{n n}>0 \tag{2.16}
\end{equation*}
$$

Note 2.5 . There exists at most one function $w(5, \eta)$ that (1) is continuous in $K+C$, and (2) satisfies Equation (2.15), inequalities (2.16) in K, and condition (2.14) on O.

Proofoof theorem 2.1. First of all we remark that, by virtue of 2.1° and the uniqueness of the Dirichlet problem, there can not be two distinct solutions of Problem A for Equation (1.1) with the same curves L having property E. Moreover, by virtue of Note 2.5 the function $\Phi(g, \eta)$, Which satisfies Equation (2.9) and inequality (2.10) in K and condition (2.11) on C, is unique. Finally, by virtue of Formula (2.12) the region D and consequently curve L are uniquely determined by function $\Phi(\xi, \eta)$. This proves Theorem 2.1.
corollary 2.3. If

$$
\begin{equation*}
\alpha<k G^{-1} \Omega^{-1 / 2 \pi \pi^{1 / 2}} \tag{2.17}
\end{equation*}
$$

Problem A has no solution possessing the properties mentioned in Theorem 2.1.
$\mathrm{Pr} \circ \circ \mathrm{f}$. Let $L_{\mathbb{S}}$ denote the mapping under (2.7) of the circle C_{8}, given by $\xi_{2}+\eta^{2}=1-\delta, 0<\delta<1$, and let $D s$ denote the closed region bounded by L_{8}. When a satisfies inequality (2.17), this contradicts the following easily established inequality:

$$
\pi(1-\delta)=\frac{1}{2} \int_{L_{\delta}} \Psi_{x} d \psi_{y}-\psi_{y} d \psi_{x}=\int_{D_{\delta}}\left(\psi_{x x} \psi_{y y}-\psi_{x y}^{2}\right) d x d y<\frac{1}{4 a^{2}} \Omega
$$

3. Existronoe of solution. $T \mathrm{~h}$ e orem 3.1. If

$$
\begin{equation*}
\alpha>k / G \rho_{\min } \tag{3.1}
\end{equation*}
$$

[^3]then the solution of Problem A exists. Moreover, the contour L has property E and the function (x, y) has continuous second order derivatives in $L+B+\Gamma$.

The proof of this theorem consists in constructing the contour L and the function $\psi(x, y)$ satisfying the conditions formulated in Section 1 . For this we will adopt the line of argument in Section 2 .
-3.1°. There exists a function $w(\xi, \eta)$ which has continuous second order derivatives in the closed circle $K+C$ defined by the inequality $\xi^{2}+\eta^{2} \leqslant 1$, and which satisfies Equation (2.15) and inequalities (2.16) in $K+C$ and condition (2.14) on the unit circle C.

The proof of this assertion follows from [20 to 22] if it is assumed that

$$
M(\theta+1 / 2 \pi) \in C^{4} \quad 0 \leqslant 0<2 \pi
$$

N o te 3.1. For the radial derivative of function $w(\xi, \eta)$ on C the following inequality holds $(0 \leqslant \theta \leqslant 2 \pi)$:

$$
\begin{equation*}
w_{r}(1, \theta)+\frac{d^{2} M(\theta+1 / 2 \pi)}{d \theta^{2}} \geqslant m_{0}>0, \quad w_{r}(1, \theta)=\left.\frac{\partial w(r, \theta)}{\partial r}\right|_{r=1}, \quad r=\sqrt{\xi^{2}+\eta^{2}} \tag{3.2}
\end{equation*}
$$

where m_{0} is a constant depending on the maximum modulus of the derivatives of order up to and including the fourth of $M\left(\theta+\frac{1}{2} \pi\right)$ ([16], page 136).

Note 3.2. Let $\left(\xi_{1}, \eta_{2}\right)$ and $\left(\xi_{2}, \eta_{2}\right)$ be two distinct points on the closed curve $K+C$. Then we have the inequality [23]

$$
\begin{equation*}
\left(\xi_{2}-\xi_{1}\right)\left[w_{\xi}\left(\xi_{2}, \eta_{2}\right)-w_{\xi}\left(\xi_{1}, \eta_{1}\right)\right]+\left(\eta_{2}-\eta_{1}\right)\left[w_{n}\left(\xi_{2}, \eta_{2}\right)-w_{n}\left(\xi_{1}, \eta_{1}\right)\right]>0 \tag{3.3}
\end{equation*}
$$

$N \circ$ te 3.2°. Having proved the existence of function $w(\rho, \eta)$ in 3.1°, let us define function $\Phi(\xi, \eta)$ by means of Equation $(2,13)$ when (ξ, η) lies in $K+C$. Then, in the circle $K+C$, function $\phi(\xi, \eta)$ satisfies Equation (2.9) and inequality (2.10); on C 'it satisfies condition (2.11). Thus, for any two distinct points $\left(\xi_{1}, \eta_{1}\right)$ and $\left(\xi_{2}, \eta_{2}\right)$ in $K+C$ the following inequality is satisfied

$$
ब^{2}\left[\left(\xi_{2}-\xi_{1}\right)^{2}+\left(\eta_{2}-\eta_{1}\right)^{2}\right]<\left[\Phi_{\xi}\left(\xi_{2}, \eta_{2}\right)-\Phi_{\xi}\left(\xi_{1}, \eta_{1}\right)\right]^{2}+\left[\Phi_{\eta}\left(\xi_{2}, \eta_{2}\right)-\Phi_{\eta}\left(\xi_{1}, \dot{\eta}_{1}\right)\right]^{2}(3.4)
$$

3.3°. Now we introduce the notation

$$
\begin{equation*}
x=\Phi_{\xi}(\xi, \eta), \quad y=\Phi_{\eta}(\xi, \eta) \tag{3.5}
\end{equation*}
$$

where $(\xi, \eta) \in K+C$ and function $\phi(\xi, \eta)$ is the same as that in 3.2°. Then Formula (3.5) furnishes a homeomorphic mapping of $K+C$ onto a certain (closed) region $D+L$ of the $x y$-piane. Equation L of the image of C (with the notation $B=\theta+\frac{1}{2 \pi}$) can be written in the form (2.3), where

$$
\begin{gather*}
N(\beta)=M(\beta)-\Phi_{r}(1, \beta-1 / 2 \pi) \\
\Phi_{r}(1, \theta)=\left(\frac{\partial \Phi}{\partial r}\right)_{r=1} \quad(1 / 2 \pi \leqslant \beta<5 / 2 \pi) \tag{3.6}
\end{gather*}
$$

Proof The homeomorphic character follows from (3.4) if it is assumed that $\dot{\Phi}_{\xi}(\xi, \eta)$ and $\Phi_{n}(\xi, \eta)$ are continuous in $K+C$. Setting $\bar{m} \cos \theta$, $\eta=\sin \theta$ and expressing $\left(\left.D^{n}(\xi, \eta)\right|_{C}\right.$ and $\left.\Phi_{n}(\xi, \eta)\right|_{C}$ in terms of $\Phi_{r}(1, \theta)$ and $\Phi_{\theta}(1, \theta)=d . M(\theta-1 / 2 \pi) / d \theta$, we obtain the equation of L in the form
(2.3) with $N(\beta)$ defined by Equation (3.6).

Note 3.3 . To each $3 \in[1 / 2 \pi, 5,2 \pi)$ corresponds one and only one point on the curve L. The curve L is smooth.
corol. a ry 3.1. The vector

$$
\begin{equation*}
v_{L}\left(\beta_{0}\right)=\left(d Y\left(\beta_{0}\right) / d_{2}^{2}-d X\left(\beta_{0}\right) / d_{3}\right) \tag{3.7}
\end{equation*}
$$

is collinear with the vector normal to L at the point $\beta_{0}, \beta_{0} \in\left[\frac{1 / 2}{} \pi, 3,{ }_{2}, 7\right)$.
Proof. As θ increases, the circumference C is traversed in the positive sense (region K remains to the left) and the Jacobian of the
mapping (3.5) is strictly positive on L by virtue of (2.9) and (2.10). Thus, the curve L is also traversed in the positive sense when $\beta=\theta+\frac{1}{2} \pi$ increases. Whence follows that the vector

$$
t_{L}\left(\beta_{0}\right)=\left(d X\left(\beta_{0}\right) / d \beta, \quad d Y\left(\beta_{0}\right) / d \beta\right)
$$

is directed along the tangent to L in the direction of positive rotation. The vector $v_{L}\left(\beta_{0}\right)$ can then be obtained by rotation of $t_{L}\left(\beta_{0}\right)$ clockwise through an angle हो
3.4°. We will write

$$
\begin{equation*}
\psi=-\xi \Phi_{\xi}-\eta \Phi_{n}+\Phi \tag{3.8}
\end{equation*}
$$

and consider ψ as a function of x and y determined by Formula (3.5). Then the function $\psi(x, y)$ has a continuous derivative in $D+L$, satisfies Equation (1.1) in region D, and fulfills relations (2.5) and (2.6) on L. Thus, for - Equations $-\psi_{x}(x, y)=\xi$ and $-\psi_{u}(x, y)=\eta$ hold.

Corollary 3.2. The angle between the vector $T(\beta)=(\sin \beta,-\cos \beta)$ and the vector $\nu_{L}(\beta)$ (see (3.7)) is strictly less than ${ }^{2} \pi$ for arbitrary $\beta \in[1 / 2 \pi, 5 / 2 \pi)$.

Indeed, by virtue of (3.2) the scalar product of these vectors is positive definite.
3.5°. Let Q_{1} and Q_{2} be two distinct points on curve L which correspond, respectiveiy, to the distinct points $\beta_{1}, \beta_{2} \in[1 / 2 \pi, 5 / 2 \pi)$. Then, the half-1ines $l\left(Q_{1}\right)$ and $l\left(Q_{2}\right)$ that originate in points $\quad Q_{1}$ and Q_{2} and have the direction of the vectors $\tau\left(\beta_{1}\right)=\left(\sin \beta_{1}-\cos \beta_{1}\right)$ and $\tau\left(\beta_{2}\right)=\left(\sin \beta_{2},-\cos \beta_{2}\right)$, respectively, will not intersect.
$\mathrm{Pr} \circ \circ \mathrm{f}$. The equations of the half-lines $l\left(Q_{1}\right)$ and $l\left(Q_{2}\right)$ can be written as

$$
\begin{aligned}
x_{i}\left(\lambda_{i}\right)=X\left(\beta_{i}\right)+\lambda_{i} \sin \beta_{i}, & y_{i}\left(\lambda_{i}\right)=Y\left(\beta_{i}\right)-\lambda_{i} \cos \beta_{i} \\
0 \leqslant \lambda_{i}<\infty & (i=1,2)
\end{aligned}
$$

Let us assume that the half-lines $l\left(\theta_{1}\right)$ and $l\left(Q_{2}\right)$ intersect; this means that there are values $\lambda_{1}^{*}, \lambda_{2}^{*}$ such that $\lambda_{2}{ }^{*}+\lambda_{2}^{*}>0$ and such that

$$
x_{1}\left(\lambda_{1}^{*}\right)=x_{2}\left(\lambda_{2}^{*}\right), y_{1}\left(\lambda_{1}^{*}\right)=y_{2}\left(\lambda_{2}^{*}\right)
$$

Now we will make use of inequality (3.3) in assuming

$$
\xi_{i}=\sin \beta_{i}, \eta_{i}=-\cos \beta_{i}, w_{\xi}\left(\xi_{i}, \eta_{i}\right)=X\left(\beta_{i}\right)-a \xi_{i}, w_{\eta}\left(\xi_{i}, \eta_{i}\right)=Y\left(\beta_{i}\right)-a \eta_{i}(i=1,2)
$$

It will then be found that

$$
-\left(\lambda_{1}{ }^{*}+\lambda_{2}{ }^{*}\right)\left[1-\cos \left(\beta_{1}-\beta_{2}\right)\right]>0
$$

which is impossible.
3.6°. For an arbitrary $\beta \in[1 / 2 \pi, 5 / 2 \pi)$ the function $N(\beta)$ defined by Formula (3.6) is positive definite.

Proof. Let $P_{0}=\left(\cos \theta_{0}, \sin \theta_{0}\right)$ be an arbitrary fixed point on the circumference C. We will introduce the function
$\Phi^{*}(\xi, \eta)=d M\left(\theta_{0}+1 / 2 \pi\right) / d \theta r \sin \left(\theta-\theta_{0}\right)^{+}+\left[M\left(\theta_{0}+1 / 2 \pi\right)-\rho_{\min }\right] \cos \left(\theta-\theta_{0}\right)+$

$$
+a r^{2}+\rho_{\min }-a
$$

and the notation

$$
\Delta(\xi, \eta)=\Phi(\xi, \eta)-\Phi^{*}(\xi, \eta),\left.\quad \Delta(\xi, \eta)\right|_{r=1}=g(\theta), \quad(\xi, \eta) \in K+C
$$

where the function $\Phi(\xi, \eta)$ is the same as in 3.2°. Since

$$
g\left(\theta_{0}\right)=d g\left(\theta_{0}\right)\left|d \theta-0, \quad d^{2} g(\theta)\right| d \theta^{2}+g(\theta) \geqslant 0^{\bullet}
$$

it follows that $g(\theta) \geqslant 0$ in the whole interval $0 \leqslant \theta<2 \pi$. In so far as the function $\Delta(\xi, \eta)$ satisfies in K the elliptic differential equation

$$
\Phi_{r_{1}, x_{i}} \Delta_{i}-2 \Phi_{=n} \Delta_{n, 1}+\Phi_{\equiv \equiv} \Delta_{n n}=0
$$

1t follows that $\Delta(\xi, \eta) \geqslant 0$ in region $K+C$. Consequently

$$
\left.\frac{\partial \Delta(\xi, \eta)}{\partial r}\right|_{P_{0}} \leqslant 0
$$

1.e. $N\left(\beta_{0}\right) \geqslant \rho_{\mathrm{min}}-2 a$, where $\beta_{0}=\theta_{0}+1 / 2 \pi$. Taking (3.1) into account, we find that $V\left(\beta_{0}\right)$ is positive.
3.7°. Let Q be an arbitrary point on curve L corresponding to some $\beta \in[1 / 2 \pi, 5 / 2 \pi)$, and $l(Q)$ be the half-line originating in point Q and directed parallel to the vector

$$
\tau(\beta)=(\sin \beta,-\cos \beta)
$$

If the point R is chosen on $l(Q)$ such that the distance of point Q from point R is equal to $N(B)$, where $N(B)$ is deflned by (3.6), then the totality of points R corresponding to all $\beta \in[1 / 2 \pi, 5 / 2 \pi)$, constitutes the curve Γ. Thus B is the angle of inclination to the x-axis of the tangent at point R to curve I, where the direction of the tangent is that of positive motion around $\bar{\Gamma}$.
3.8°. Curve L has property E.
We must obviously check that $N(\beta)<\rho(\beta)$ for $\beta \in[1 / 2 \pi, 5 / 2 \pi)$. This follows from inequality (3.2).
3.9°. Let B denote the region between Γ and L. We will define the function $\psi(x, y)$ in $L+B+\Gamma$ by means of Equations (2.4) when

$$
1 / 2 \pi \leqslant \beta<5 / 2 \pi, \quad 0 \leqslant u \leqslant N(\beta)
$$

where $N(B)$ is determined by (3.6). Then, in $L+B+\Gamma$ function $\psi(x, y)$ satisfies Equation (1.3) and on Γ the conditions (1.3) and (1.4). Equations (2.5) are satisfied on L.
3.10°. The contour L determined by Equations (2.3) with $N(\beta)$ in the form (3.6) and function $\psi(x, y)$ defined in $F+\Gamma$ by the method mentioned in 3.4° and 3.9°, is the solution of Problem A. This completes the proof of Theorem 3.1.

$$
\begin{gather*}
\text { C } \circ \mathrm{r} \circ 11 \mathrm{arg} \text { 3.3. For arbitrary } \beta \in[1 / 2 \pi, 5 / 2 \pi) \text { we have } \\
\rho_{\min }-k G^{-1} \alpha^{-1} \leqslant N(\beta)<\rho(\beta)-k 2^{-1} G^{-1} \alpha^{-1} \tag{3.9}
\end{gather*}
$$

Corollary 3.4. If

$$
\alpha \leqslant k 2^{-1} G^{-1} \rho_{\min }-1
$$

then no solution of Problem A having the properties mentioned in Theorem 2.l exists.
4. Some properties of the solution of Problem $A_{\text {. }} 4.1^{\circ}$. Let $\alpha_{2}>\alpha_{1}$. We will denote the two values of α introduced in Sections 1 to 3 by a_{1} and α_{2}, respectively. Then for an arbitrary $\beta \in[1 / 2 \pi, 5 / 2 \pi)$ we have

$$
\begin{equation*}
N_{1}(\beta)+\frac{1}{2} \frac{k}{G}\left(\frac{1}{a_{1}}-\frac{1}{\alpha_{2}}\right) \leqslant N_{2}(\beta) \leqslant N_{1}(3)+\frac{k}{G}\left(\frac{1}{\alpha_{1}}-\frac{1}{\alpha_{2}}\right) \tag{4.1}
\end{equation*}
$$

Proof. We will use the notation

$$
\begin{gathered}
A^{\prime}=1 / 2\left(w_{1 \eta \eta}+w_{2 \eta \eta}\right), \quad B^{\prime}=1_{2}\left(w_{1 \xi r_{1}}+w_{2 \xi r_{1}}, \quad C^{\prime}=1 / 2\left(w_{1 \xi}+w_{2 \xi \xi}\right)\right. \\
H(\xi, \eta)=u_{2}(\xi, \eta)-w_{1}(\xi, \eta), \quad(\xi, \eta) \in K+C, \quad \xi^{2}+\eta^{2} \leqslant 1 \\
H^{*}(\xi, \eta)=w_{1}(\xi, \eta)-w_{2}(\xi, \eta)-\frac{k}{4 G}\left(\frac{1}{\alpha_{*}}-\frac{1}{\alpha_{2}}\right)\left(\zeta^{2}+\eta^{2}-1\right), \quad \alpha_{*}<\alpha_{1}
\end{gathered}
$$

Since the following inequalities hold on curve K

$$
\begin{aligned}
& A^{\prime}>0, \quad B^{\prime}>0, \quad . \mathbf{I}^{\prime} C^{\prime}-\left(B^{\prime}\right)^{2}>0
\end{aligned}
$$

the functions $H(\xi, \eta)$ and $L^{* *}(\equiv, n)$ can not attain their respective minima in $\because \quad[22]$. Provided $\left.\left.H(\xi, \eta)\right|_{C} \doteq H^{*}(\xi, \eta)\right|_{C}=0$, we have $\partial H(1, \theta) / \partial r \leqslant 0$ and $\partial I^{*}(1, \theta)!\partial r \leqslant 0$. Whence follows the validity of inequality (4.1), if one
takes a value α_{*} slightily different from α_{i}.
4.2°. If the curve Γ is symmetric with respect to some axis, then curve L is also symmetric with respect to the same exis.

Proof. Let Γ be symmetric with respect to the x-axis, i.e.

$$
M(\theta+1 / 2 \pi)=M(-\theta+1 / 2 \pi)
$$

and let the function $\Phi(\xi, \eta),(\xi, \eta) \in K+C$, have the same sense as in Section 3. By virtue of the Note $2.5, \Phi_{r}(1,-\theta)=\Phi_{r}(1, \theta)$.

N o te 4.1. It is known that it is impossible to construct in $F+\Gamma$ a continuous solution of Equation (1.2) with boundary condition (1.3) such that the derivatives ψ_{x} and ψ_{y} are continuous in $F+\Gamma$ (because the index of Γ relative to a continuous vector field $q=\left(\psi_{x}, \psi_{y}\right)$ in $F+\Gamma$ is equal to unity [18]). However, such a construction is possible in $F+\Gamma-2$, where l is a certain region lying in F. We will limit consideration to certain contours Γ for which l consists of straight-line segments, and w1ll prove that, for an arbitrary value of a, l lies inside region D.
a) The curve Γ is symmetric, is elongated along the x-axis, and has only four vertices (the vertex of an oval is a point where the curvature is extremal; every oval has at least four vertices). In this case, 2 is the segment of the x-axis [24] joining the centers of curvature S_{1}, S_{2} of the contour at points T_{1} and T_{2} lying on the x-axis (see Fig.2). By virtue of (3.9), L intersects the x-axis at a point lying between T_{1} and S_{1} and also at a point between T_{2}

Fig. 2 and S_{z}^{*}. If L touches or intersects the segment $S_{1} S_{2}$, then it follows by virtue of 4.2° that region D would not be simply connected. Thus, l lies inside D.
b) Let the convex curve Γ_{n} approximate to a regular polygon and be defined by Equation [25]

$$
\begin{aligned}
& x=R\left[f \cos t+(n-1)^{-1} f^{1-n} \cos (n-1) t\right] \\
& y=R\left[f \sin t-(n-1)^{-1} f^{1-n} \sin (n-1) t\right] \\
& 0 \leqslant t<2 \pi, \quad f=(n-1)^{1 / n}+\varepsilon, \quad \varepsilon>0
\end{aligned}
$$

In this case curve 2 consists of n segments foining the points of intersection of each of the symmetry axes of Γ_{0} with the centers of curvature of the points on Γ_{n} corresponding to $t=2 \pi t / n \quad(t=0,1, \ldots,(n-1))$. By virtue of (3.9) and 4.2°, 2 Iles inside L.

BIBLIOGRAPHY

1. St.Venant, B., Differential Equations of the Internal Motion in Solid Bodies and the Boundary Conditions for these Solids. (Russian translation edited by Iu.N.Rabotnov). Izd.inostr.Lit., 1948.
2. Nadai, A., Der Beginn des Fliessvorganges in einem tordicrten stab. Z.angew.Math.Mech., Vo1.3, 1923.
3. Sokolovski1, V.V., Ob odnoi zadache uprugo-plasticheskogo kruchenila (On a problem of elastic-plastic torsion). PMM Vol.6, № 2-3, 1942.
4. Galin, L.A., Uprugo-plasticheskoe kruchenie prizmaticheskikh sterzhnei (Eiastic-plastic torsion of prismatic bars). PNM Vo1.8, No 4, 1944.
5. von Mises, R., Three remarks on the theory of the ideal plastic body. Reissner Aniversary Volume. Ann. Arbor, Michigan, 1949.
6. Galin, L.A., Uprugo-plasticheskoe kruchenie prizmaticheskikh sterzhnei (Elastic-plastic torsion of prismatic bars). PMM Vol.13, No 3, 1949.
7. Galin, L.A., 0 sushchestvovanil reshenila uprugo-plasticheskoi zadachi kruchenila prizmaticheskikh sterzhnei (On the existence of solution of elastic-plastic torsion problem for a prismatic bar). PMM Vol.13, NO 6, 1949.
8. Trefftz, E., Uber die Spannungsverteilung in tordierten Staben bei teilwelser uberschreitung der Fliessgrenze. Z.angew. Math.Mech., Vol.5, 1925.
9. Christopherson, D.G. and Southwell, R.V., Relaxation method applied to engineering problems. Proc.R.Soc. A, Vol.168, 1938.
10. Bulygin, V.Ia., Ob uprugo-plasticheskom kruchenil prizmaticheskikh sterzhnei (On elastic-plastic torsion of prismatic bars). PMM Vol.13, № 1, 1952 .
11. Kiselev, B.M., Reshenie kraevylch zadach, opisyvaemykh uravnenilami v chastnykh proizvodnykh smeshannykh tipov (Solution of boundaryvalue problems described by partial differential equations of mixed type). Trudy tsent. aero-gidrodin.Inst., № 718, 1958.
12. Perlin, P.I., Uprugo-plasticheskoe kruchenie sterzhnei oval'nogo poperechnogo sechenila (Elastic-plastic torsion of bars of oval cross-section). Inzh.Sb.. Vol.31, 1961.
13. Varle1, E., Flows of dilitant fluids. Q.appl.Math. . Vol.19, № 3, 1962.
14. Chebotarev, N.G., Sobr.Soch., (Collection of Works), Vol.II, Izd.Akad. Nauk SSSR, 1949.
15. Petrovskii, I.G., Lektsii po teoril obyknovennykh differentsial nykh uravnenii (Lectures on the Theory of Ordinary Differential Equations). Gostekhizdat, 1952.
16. Bernshtein, S.N., Sobr.Soch., (Collection of Works), Vol.III, Izd.Akad. Nauk SSSR, 1961.
17. de la Vallée-Poussin, C.J., Course of Infinitesimal Calculus. Vol.II, (Russian Translation). Gostekhizdat, 1933.
18. Lefschetz, S., Geometric Theory of Differential Equations (Russian translation), Izd.inostr.Lit., 1961.
19. Tricomi, F., Lectures on Partial Differential Equations (Russian translation), Izd.inostr.Lit., 1957.
20. Pogorelov, A.V., Ob uravnenilakh Monzha-Ampera ellipticheskogo tipa (On Monge-Ampère Equations of Elliptic Type)., Izd.khar'k.Univ., 1961.
21. Bakel"man, I.Ia., Reguliarnye reshenila uravnenil Monzha-Ampera (Regular solutions of Monge-Ampère equations). Dokl.Akad.Nauk SSSR, Vol.157, № 2, 1964.
22. Miranda, K., Uravnenila v chastnykh proizvodnykh ellipticheskogo-tipa (Partial Differential Equations of Elliptic Type). Izd.inostr.Lit., 1957.
23. Hartman, P. and Winter, A., On pleces of convex surfaces. Am.J.Math., Vol.75, № 3, 1953.
24. Sokolovskii, V.V., Teoriia plastichnosti (Theory of Plasticity). Gostekhizdat, 1950.
25. Muskhelishvili, N.I., Nekotorye osnovnye zadach1 matamaticheskoi teori1 uprugosti (Some Basic Problems of the Mathematical Theory of Elasticity). Izd.Akad.Nauk SSSR, 1954.

[^0]: *) Summary of this paper was published by the author in the Dokl.Akad.Nauk SSSR, Vol.149, № 5, 1963.

[^1]: *) In particular, points Q_{1} and Q_{2} do not coincide.
 **) I.e. $\psi(x, y)$ has continuous second order derivatives which are continuously extensible from B onto L and Γ.

[^2]: *) Thus, property E of curve Γ guarantees the single-valued continuation from Γ onto L of the Cauchy data (1.3) along the projections of the characteristics onto the x_{i}-plane.
 **) By rotating the coordinate system, the second mixed partial derivative can always be made zero at point (x_{0}, y_{0}). At the same time, the Laplacian and the Hessian remain constant, and the property mentioned in Note 2.4 also remains unaltered.
 ***) If at the point (x_{0}, ν_{0}) all partial derivatives with respect to x and y of y_{x} are zero, then ${ }^{\prime} x$ is constant in the vicinity of point (x_{0}, y_{0}) and consequently aiso in $D^{*}+L$.

[^3]: *) Here and in what follows the subscripts ξ, η indicate partial differentiation.

