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The problem of determlnlng the stresses arising during the torsion of acylin- 
drical bar of elastic-ideal plastic material was posed a long time ago cl and 
21 - The major difficulty is that the boundary separating the elastic and 
plastic regions is unknown and its determination is part of the processes of 
finding the solution. The exact solution for a circular cross-section was 
found in Cl], and that for an almost elliptic cross-section was found in[31. 
when the cross-section Is a polygon c41, this problem is reduced to the deter- 
mination of two functions of a complex variabl P that are analytic In the 
upper half-plane and satisfy certain boundary-value conditions on the real 
axes. In [3 and 51, an inverse method was proposed in which the shape of 
the elastic core is used to find the cross-section. In c63, the Inverse 
method was used to reduce the elastic-plastic torsion problem to a nonlinear 
singular integral equation which was not investigated any further. In E73, 
necessary conditions for the existence of the solution of the elastic-Plastic 
torsion problem were ascertained. 
in [4 and 8 to 123. 

Various approximate methods were suggested 

Below we will study the case of an oval cross-section for angles Of twist 
such that the elastic-elastic boundarv has no Dolnt in common with the longi- 
tudinal surface of the-bar. By means-of a Legkndre transformation, the prc- 
sent problem has been reduced to the Dlrichlet problem in a circle for the 
MongelAmp&re equation of the elliptic type. Moreover, the elastic-plastic 
boundarv Is determined from the normal derivative of the solution on the 
boundary of the circle. The existence and uniqueness of the solution of the 
elastic-plastic torsion problem has been proved. A number of estimates of 
practical interest have &so been obtained. 

1. Fomuletlon of problem. We will consider the elastic-plastic torsion 

of a cylindrical bar whose cross-section F is bounded by the strictly con- 

cave contour r . We will assume that the radius of curvature p(s) Z 0 

exists at each point of the contour F and that as a function of the 

") Summary of this pa er was published by the author In the Dokl.Akad.Nauk 
SSSR, Vo1.149, NP 5, g 19 3. 
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arc-length s it Is a function of class @, i.e. that dap(s)/dsa is con- 

tinuous* It 5s clear that 00 > Pmax > p (s) > Prnie >o, where Pmax, 

and Pmin are the maxlmum and minimum values of the radius of curvature, 

respectfvely. We will use the triangular Cartesian axes xyz with the 

s-axis parallel to the generatrix of the cylindrical surface of the origin 

0 in F. Let G be the shear modulus, k the plastic constant, (I the 

angle of twist per unit length, and R the area of F . We will use the 

notation a = $'&+'k. The twisting has a clockwise sense when viewed 

in the positive direction of the z-axis. We will assume that there Is an 

elastic core, namely the simply-connected region D with boundary L lying 

entirely inside r (Pig.1). The doubly-connected region bounded by r and 

L will be denoted by B . In this region the 

material is in a completely plastic state. The 

indices x , 2/ will be used to indicate partial 

derivatives, as well as for the usual purpose of 

Indicating the components of stress, where this 

does not lead to confusion. 

The elastic-plastic to%sion problem, which 

henceforth will be called problem A, is formu- 
Fig. 1 lated as follows. 

Problem A. Given a simply-connected region F bounded by-the 

oval r satisfying the above-mentioned smoothness conditions. In theslmply- 

connected region D , which together with its boundary L lies inside F , 

it is required to find to within an arbitrary additive constant the function 

$(x,v) that Is (1) single-valued and continuous in F + r , (2) has conti- 

nuous first order partial derivatives Jl,, 4, In F + l-' , (3) has continuous 

second order partial derivatives Jlxx, $,,, tlr in D , and (4) satisfies 

the following conditions: 

1 

in 

in region D (l-31 

region L+a+r (1.2) 

grad -$I = nr on boundary r 

where nr is the unit outward normal to the boundary curve I' , 

(1.3) 

Note 1.1. The quantity 4 = T'G-'a-'k 4s regarded as parameter 
C<a<m. 

N o t e 1.2. It follows from (1.3) that the function $(r,y) is con- 
stant on I? . We will assume that 

* (x, Y)r = 0 (f-4) 

N o t e 1.3. The shear stresses are 

z = x-$V1 'F z.? !IZ = -k$& 

N o t e 1.4. The problem of the flow of a dilatant fluid through a 
tube 1131 of elliptic cross-section F has a similar formulation. Another 
hydrodynamic Interpretation of Prob1em.A was given by von Mlses [5]. 

2. mxiqsunorr oi rolutfon. Let II be an arbitrary point on the contour 

I-. Let x,,?yl be the moving coordinste system (Fig-l) in the m-planefbrmed 
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by the tangent Rx, to r at B pointed in the direction of increasing arc- 

length, and the inward normal &. We will assume that the tangent to r 

at the point of intersection with the x-axis is perpendicular to the x-axis. 

The angle between Ax1 and Ox will be denoted by B . The eql.atlon of the 

oval r can be represented in the form [lb1 

cos fl + M (13) siil 8, Y” (P) = ‘9 sin 13 - M (p) cos f3 

P/w G P < V4 (2.9 

where H(g) Is the basic function on I? . We have the relation 

P (P) = M 09 + @qp- w 
where p(p) is the radius of curvature of r as a function of 6 . 

N 0 t e 2.1. According to (2.11, each 
with one and only one point R ET. 

$ e [1/sn,b/sn) is associated 

N 0 t e 2.2. It Is clear that M(fi)E C’, i.e. d*&.f(p)/dfi* Is a con- 
tinuous function for p E [l/sm,6/sn). 

D e f 3. n i t i o n _ The curve L situated within r has property E 

if the following conditions are fulfilled: 

a) The curve L admits a representation of the form 

X (I9 = 5' (B> -N (B) sin PI Y(B) = 9' (B) + N ($1 cos 8 (2.3) 
V/233 G P< 5/24 

where x"(g) and y'(g) are taken from (2.1) and N(g) has period 2s and 

is a continuous function of g In P/$X, V,@, with 0 <N (PB) < P au* 
b) For two distinct arbitrary angles B - B1 and B =Bz in C&~,%rl 

the line segments RRIQ1 and ReQz do not have a point of intersection (*). 

Here, each point &e r corresponds to a g, satisfying (2.1) and each 

point Q~EL corresponds to a p, satisfying (2.3) ($ = 1, 2). 

N 0 t e 2.3. It is clear that L is a simple Jordan curve such that to 
each value of fi E [l/ n,6/,n) there is one and only one point Q EL; given 
by (2.3). Moreover, h(p) Is the ordinate of this point In the system of 
coordinates xl& , 1.e It is the length of the segment QR (Fig.1). 

T h e o r e m 2.1. If a solution of Problem A having property E on 

the contour L exists,and if the function +(x,g) is twice continuously 

differentiable (**I in L + 3 f r , then this solution is unique. 

Let It be assumed that Problem A has a solution with the properties men- 

tioned in Theorem 2.1; then the following assertions sre valid. 

2.1°. In the xy$-space the functions #(x,y), where the Points (r,@) 
lie In L + B + r , generate a surface whose parametric representation is 

(2.4) 

*) In particular, points Q1 and Q2 do not coincide. 

**) I.e. #(CC,@) has continuous second order derivatives which arecon- 
tinuously extensible from B onto L and l? . 
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cm 0) 
y= dB -sinP-[M(p)--U]cosp 2IG’ . 

order derivatives in L + B + r and that the projections on the xy- lane of 
the characteristics of the Integral surface satisfying Equation (1.2 P and 
condition (1.3) do not Intersect (*) In L + B + r , since they coincide with 
the normals to I' . 

Corollary 2.1. In L + B + P the following relations hold: 

1c1, = - sin $, 9Y = c0sB, w- @r--Y*l,= MO% (2.5) 

N o t e 2.4. From Note 2.1 and relations (2.5) which hold In particular 
on L 
on L 

,.lt follows that each of the functions $,(.r,Y), +,(x,y) do not assume 
any particular value more than twice. 

2.2O. Everywhere In region D 

%U~~ -%lla#J: @.fO 

Proof . Let point (z,,, Yo)fz D and 

%X%V--%ya=O 
Without limiting the generality, one can assume (**) that 

9Q/@ot Yo) = hz (Qt Yo) = 0 

,.( 
Then, 
x0,&,) 

([16), page 428) the harmonic function @=(r,r/) assumes the value 
at at least four distinct points on the contour (***). 

2.3O. Formulas 

4 = -%(G Y). '1 =-$/(z, Y), (m, Y)ED+L (2.7) 
effect a homeomorphlc mapping of D + L onto the circle X + C in the TV- 
plane. This circle 1s defined by the Inequality Es+ rla < 1. 

This assertlon Is vlndlcated as follows: (1) since the functions $,(r,y) 
and *,(x,y) are continuous In D + L , 
one mapping of L 

Formulas (2.7) represent a one-t:- 
onto the clr&mference C of unit radius, I.e. fa+ 

(2) the Jacobian of mapping (2.7) Is nonzero in region D ([171, page 
= 1; 

2). 
2.4O. Everywhere in region D 

%I%?&/ -01,,2>0 
Proof Let the contrary be assumed. Then the Index of the isolated 

singular polnt'ln the continuous vector field Q = (t 
since the Index of L rilati% 

t ) will be -l.ThlS, 
however, is impossible, T;O 

for example, [18]). 
q Is 1 (see, 

Corollary 2.2. Everywhere in D 

“I’,, < 0, %/“<O 

*) Thus, property Z of curve 
tlon from 

I-' guarantees the single-valued contlnua- 
r onto L of the Cauchy data (1.3) along the projections of the 

characteristics onto the x,-plane. 

i*) By rotating the coordinate system, the second mixed partial derivative 
can always be made zero at point (no,Yo). At the same time, the Laplacian 
and the Hessian remain constant, 
remains unaltered. 

and the property mentioned In Note 2.4 also 

***) If at the point (x~,~~) all partial derlvatives with respect to x and 
y of ). are zero, then $, is constant in the vicinity of point (xz,,po) 
and consequently also In D +L . 
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2.5". Let us introduce the notation 

@=-W&-&yf?1' (2.8) 

and regard 4 as a function of the variables 5 , 71 defined in (2.7). ‘&e 
function a(?, n) is then continuous in the closed circle K + C , and in K 
it satisfies (*) Equations 

@&4Q'n* -@& -a(@t;+@&==@ (2.9) 
and the inequalities 

@,,>Q, @n,.>O (2.10) 

On the circumference C this function satisfies the condition 

@<(Cl rlflc= JCf (@-t%Xf (2.11) 

where 9 is the polar angle in the cn-plane. In circle K we have-the 
Identities 

q+ (E, 11) = 2, @,(L rl) = Y (2.12) 

The proof of' 2.5" follows from the properties of the Legendre transforma- 
tion [ 193. 

2.6". Let us use the notation 

w (E, r) = @ ($3 9) - liza (Ss + $7 + 'I$ (%.13) 

The function ~(5, nl is continuous in K + C , and on the circumference 
of the circle its value is 

zc' (E, ll)jc = 1?4 (0 i- '/,n) (2.14) 

and inside X it satisfies the Monge-Ampere equation 

W~lu,, - ?L*_ Tli 
2 zz i.9 (2.15) 

and the inequalities 
I(':: > 0 ) %I>0 (2.16) _? 

N 0 t e 2.5. There exists at most one function ~(5, n) that (1) Is 
continuous in K + C , and (2) satisfies Equation (L?.l5), inequalities (2.16) 
in K , and condition (2.14) on C . 

Proof of t h e o r e m 2.1. First of all we remark that, by 
virtue of 2.1' and the uniqueness of the Dlrichlet problem, there can not be 
two distinct solutions of Problem A for Equation (1.1) with the same curves 
L having property I . Moreover, by virtue of Note 2.5 the function @(T,n), 
which satisfies Equation (2.9) and inequality (2.10) in X and condition 
(2.11) on < , is unique. Finally, by virtue of Formula (2.12) the region 
D and consequently curve L are uniquely determined by function NY, rl). 
This proves Theorem 2.1. 

c 0 r 0 1 1 a r y 2.3. If 
Q < k~-~Q-%~"~ (2.17) 

Problem A has no solution possessing the properties mentioned in TheOrem2.1. 

Proof denote the mapping under (2.7) of the circle Cg, 
given by E" _{ q2Eg Ls (5 0 < 6 <'1 and let fl& denote the closed region 
bounded by Lb. When a satisfies inequality (2.17), this contradicts the 
following easily established inequality: 

lt(I - 8,=; \ QW!,- 9+% = c\ 
(%&$, - %,,") dXdY& Q 

Ql 66 

3. E%irt’onom of solution. T h e o r e m 3-l. If 

cc > !i I c&i, (3-V 

*) Here and in what follows the subscripts 5, n Indicate partial differen- 
tiation. 



then the solution of Problem A exists. Moreover, the contour L has pro- 

perty E and the function $(x,P) has continuous second order derivatives 

in L+B+T. 

The proof of this theorem consists in constructing the contour L and 

the function $(.x,y) satisfying the condltions formulated in Section 1. For 

this we will adopt the line of argument In Section 2. 

-3.1". There exists a function w(g,n) which has continuous second order 
derivatives in the closed circle K + C defined by the inequality ga+ na61, 
and which satisfies Equation (2.15) and inequalities (2.16) in X + C and 
condition (2.14) on the unit circle C . 

The proof of this assertion follows from [20 to 223 if it is assumed that 

M (0 + ‘/,n) E C4 o<e<2n 

Note For the radial derivative of function w(g,q) on I: the 
following ine&kity holds (0 <t3 < 2%) : 

WP (L 0) + 
d2W~+*/2n)>mo>0 aw(r, 6) 

de2 / , w,(l, w=:ar r=l’ r= -C/tat rla (3.2) 

where m, is a constant depending on the maximum modulus of the derivatives 
of order up to and including the fourth of M(e + &T) ([16], page 136). 

Note 
closed curve 3/k"; C? . 

Let (g,,ql) and (g2,na) be two distinct points on the 
Then we have the inequality [23] 

(Se- 41) I~~(ee% %) -wt (411 %)I+ h- rid IW,(h rl2) - s&(&r %)I>0 (3.3) 

N o t e 3.20. Havl 
let us define function 3 

proved the existence of function w(g, 
r,q) by means of Equation (2.X3) when 7 

) in 3-l”, 

in K+C. Then 
g,n) lies 

In the circle X + C , function O(g,n) satisfies Equa- 
tion (2.9) and ine&ality (2.10); on C it satisfies condition (2.11). 
Thus, for any two distinct points (gl,~I) and (g2,n2) in h’ + C the follow- 
ing inequality is satisfied 

4 i(Ex -W + (tla - rllPl< ['De (4a, rlr) - @D, (Cl9 rll)la + PII (El, rls) - qj (41, i*>P (3.4) 

3.3”. Now we introduce the notation 

2 = @,(e* rl)* ?4=@',(4% Tt) (3.5) 

where (E, q) EX-kC and function Q(g,n) is the same as that in 3.2’“. Then 
Formula (3.5) furnishes a homeomorphlc mapping of X + C onto a certain 
closed)reglon D + L of the xv-plane. Equation L of the image of C 
with the notation F = 9 + &) can be written in the form (2.3), where 

N(P) = M (3) -a), 0, B - 11% a) 

(‘h 3s d B < &/a II) (3.6) 

Proof The homeomorphic character follows from (3.4) if it is 
assumed that 6&n) and 6,(&q) are continuous In K + C. Setting F -case, 

T - sin e and 
and aP,(l, 0) = 

ex resslnp. 
d.lf & -I- '12 TL) ‘dO- 

(p; (6, n)Ic and a,,(& 31 in terms of @ (1, 01 
we obtain the equat on of L In the'l'orm 

(2.3) with N(s) defined hy iquation (3.6). 
fi 

N o t e 3.3. To each $ E pi2 .z, :'2 xf corresponds one and only one point 
on the curve L . The curve L is smooth. 

C 0 r 0 i-1 a r y 3.1. The vector 

VL ($0) = (dY (3,) / d:!, - d.\’ (.$“) / d?) (3.7) 

is collinear with the vector normal to L at the Point &, &, E [$'@I, 3,'2zr). 

Proof As 13 Increases, the circumference C is traversed in the 
positive sense'(reglon K remains to the left) and the Jacobian of the 



1044 B.D. Annln 

mapping (3.5) Is strictly positive on L by 
Thus, the curve L Is also traversed In the 
Increases. Whence follows that the vector 

tL(Po) = (dX (Ps)/@, dY 

virtue of (2.9) and (2.101.. 
positive 

(Bo)ldB) 

Is directed along 
The vector v~(j&) 
through an angle 

3.4”. We will 

the tangent to L In the direction 
can then be obtained by rotation of 
r)ll 

of positive rotation. 
tL (fj,) clockwise 

(3.q 
and consider $ as a function of x and y determined by Formula (3.5). 
Then the function Jl(x,v) has a continuous derivative In D + L satisfies 
Equation (1.1) In region D and fulfills relations (2.5) and (6.6) on 
!Phus,for- _ Equ;ltlons 

L 
-4)x (2, Y) = 5 and --q9, (2, Y) = rl hold: 

sense when B-e+*rr 

C 0 r 0 11 a r y 

~;~$e$/c;,sr v,(P) ( 

3.2. The angle between the vector t(S)=(slng,-ccsg) 
see (3.7)) Is strictly less than &T for arbitrary 

Indeed, by virtue of (3.2) the scalar product of these vectors Is positive 
definite. 

3.5”. Let Cl1 and Oa be two distinct points on curve L which corres- 
pond, respectlvely,,to the distinct points i, pa E ['/,n, 5/an). Then, the 
half-lines l(Q1) and Z(Q,) that originate B n points Q1 and Q2 and have the 
dlrectlon of t;;l;e;;r;n;e;\<cT (sin /% - cos 83 
respectively, 

and T (&) = (sinfiI, - COS&) , 

Proof . The equations of the half-lines Z(0,) and Z(Q2) can be 
written as 

Xi(hi) = X(&)+ hi sin pi, Yi(hJ= Y(Pi)-hi COS pi 

O<hi<m (i = 1, 2) 

Let us assume that the half-lines Z(&) and Z(Qa) Intersect; this means 
that there are values XT, X2 such that A,*+ A,*> 0 and such that 

xi (hi*) = x,(&a*), Yl(&*) = Ya (AZ*) 

Now we will make use of Inequality (3.3) In assuming 

Ei = sin pi, Q = -cOSpjt Wi, (4i9 ni)= x(M-Qa4i! w,(4i~ ni)= Y (Bi)-Uni(i = i, 9 

It will then be found that 

- (hi* + J”2*) [i - cos (Pl - P2)l > 0 

which Is Impossible. 

3.6”. For an arbitrary 9 E [1/2n,6/z51) the function N(s) defined by 
Formula (3.6) Is positive definite. 

Proof Let PO = (cos&, sin&) be an arbitrary fixed point on the 
circumference 'c . We will introduce the function 

a,* (4, n) = d.42 (e, +1/2~) /de r sin (e - eo)y+:[h4(e0 + l/2 a)- pminj cos (e -ee,) + 

+a+ t Pmln-e 

and the notation 

A (E, n) = @((El 11) - TJ* (E, n), A (C. tl) Irrl = g (Ws (i, 11) E K + c 

where the function @(<,n) is the same as In 3.2O. Since 

6 (eo) = dg (e,) 1 de = 0, sg (e) 1 de2 f d (e) > 0 * 

it follows that s(O)>,U In the whole Interval O.<~<~TC. In so far as the 
function ~(5.7) satisfies In X the elliptic differential equation 

(I),,&; -S(D~,:Ai,,$ 'KfAnn = O 7- 

It follows that A(<, n)>O .ln region 1 + C . Consequently 
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aAl& ‘-11 .<,, 
ar I 

I.e. N(Po)>p,~,-2~, where Po=00+1/z2. Taking (3.1) into account, we find 
that V'(&) is positive. 

Let 4 be an arbitrary point on curve 
p &L, 6/ n) 

L corresponding to some 

directed pa;ailel 
and l(Q) be the half-line originating in point 0 and 
to the vecter 

z(p) = (sin fi, - cos fS) 

If the point I) is chosen on Z(Q such that the distance of point 4 
from point A is equal to N(~),where B L )ls deflnedby (3.6),thentti totality of 
points R corresponding to all .fi E[l/.g& 5/an), constitutes the curve P . 
Thus B is the angle of inclination to the r-axis of the tangent at point 
R to curve I? where the direction of the tangent is that of positive 
motion around c . 

3.8”. Curve L has property & . 

We ,must obviously check that N(p)< p @) for BE [?/&6/g~). This follows 
from inequality (3.2). 

fun:;::, 
Let B denote the region between P and L . We will define the 
$(x,y) in L + B + r by means of Equations (2.4) when 

%n < B < =/2n* OdudN(B) * 

where N(p) is determined by (3.6). Then,.ln i + B + r function $(x,Y)' 
satisfies Equation (1.3) and on P the conditions (1.3) and (1.4). Equations 
(2.5) are satisfied on L . 

3.10". The contour 
form (2.6) and function 

L determined by Equations (2.3) with N(8) in the 

In 3.4 and 3.9", 
#(x,F) defined in F + r by the method mentioned 

is the solution of Problem A. This completes the proof of 
Theorem 3.1. 

Corollary 3.3. For arbitrary p E [l/.g~,~/,n) we have 

Pmtn- kC’a-’ < N @) < p (8, - k2-‘G-‘cc-’ (3.9) 

C 0 r 0 11 a r y 3.4. If 
cc < k2-‘G-‘pmi,-’ 

then no solution of Problem A having the properties mentioned in Theorem 2.1 
exists. 

4. BOlllO pPopOrtia8 of thr rolution of ~Obhll A, 4.1'. Let aa> al . 
We will denote the two values of (I introduced In SeCtions 1 to 3 by 0~~ and 
(Lo, respectively. Then for an arbitrary B E I1lzn, %JC) we have 

Proof . We will use the notation 

A'= V2(q,,,, +w2,,,,). B'= 1 '2(Wlir, i W2:,), _I C' = l/2&<', + w2;;) 

H(E. '1) =wK, rl)--uric9 rl). (5, rl) E K-t C, 52-i- q2g 1 

ri+g, 1)'LU1(5.q)-~a(S,11)-~~($-~)(FP+12-l). ~<a1 

Since the following Inequalities hold on curve .r( 

A*>O, B'>O, :l'C' - (B')2 > 0 

A’HFZ- 2B'IJ:,+ C'II,,, <O, rl'll,-• - 2B'IIia* -+ C’II,,*<O .; 

the functions .V(~,TJ) and L’*(?.n) can not attain their respective mlnama In 
.'( [22]. Provided II (E, ?$'lc g H* (5, $1 = 0, we have 
'all* (1, e) ! ar < 0. Whence foliowe 4 

Hf (1 0) / ar < 0 and 
the val dlty of inequality (4.1), If one 
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takes a value u, slightly different from ox. 

4.9, If the curve P is symmetric with respect to some axis, then curve 
L is also symmetric with respect to the same exis. 

Proof . Let r be symmetric with respect to the x-axis, I.e. 

M (0 + ‘lgc) = M (- 8 + l/gx) 

and let the function cXr(~,~), (E,n)E K+C, have the same sense as in Sec- 
tion 3. By virtue of the Note 2.5, @,(i, - 8) = 4,(&B). 

N 0 t e 4.1. It Is lmown that it is impossible to construct in F f P 
a continuous solution of Equation (1.2) with boundary condition (l.3) such 
that the derivatives $, and $r are continuous in F + I? (because the index 
of P relative to a continuous vector field 4 = ($,,$ ) in F + I? is equal 
to unity [IS] ) . However, such a construction Is possible In F + r - 7, 
where 1 is a certain region lying In F . We will limit consideratlon'to 
certain contours f for which I consists of straight-line segments, and 
will prove that, for an arbitrary value of c , I lies inside region D . 

a) The curve P is symmetric, is elongated along the x-axis, and has 
only four vertices (the vertex of an oval is a point where the curvature is 
extremal: every oval has at least four vertices). In this case, 1 Is the 
segment of the r-axis [24] joining the centers of curvature s,,.s, of the 
contour at points T1 and T lying on the x-axis (see Flg.2). By virtue of 

(3.9s. L Intersects the x-axis at a point lying 
between T, and S, and also at a noint between T, 
and SE. k' L tbuches or intersects the segment 
SlSZ I then it follows by virtue of 4.2" that region 
It would not be simply connected. Thus, 5 lies 
inside D . 

b) Let the convex curve Pa approfimate to a 
regular polygon and be defined by Equation [251 

-I- 
x = fl [f cos t f (n - 1)-l p cos (n .- 1) t] 

y = R [f sin t - (n - I)-lfl-nsin fn - 1) t] 
Fig. 2 

0 <t < 2n, f = (n - 1)“” t E, F>O 

In this case curve 1 consists of n segments joining the points of 
intersect'ion of each of the symmetry axes of r. with the centers of curva- 
ture of the points on P,, corresponding to t = 2&/n (t = 0, 1, . . ..(n-1)). 
By virtue of (3.9) and 4.2*, 2 lies inside L . 
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